Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.020
Filtrar
1.
Environ Sci Technol ; 58(14): 6435-6443, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551393

RESUMO

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.


Assuntos
Incrustação Biológica , Nanopartículas , Osmose , Nylons/química , Gravuras e Gravação , Membranas Artificiais , Água/química
2.
Environ Sci Technol ; 58(11): 5174-5185, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451543

RESUMO

Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.


Assuntos
Cloretos , Nylons , Cloretos/química , Nylons/química , Membranas Artificiais , Solventes , Água
3.
Chemosphere ; 353: 141108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423147

RESUMO

Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Poluentes Ambientais , Fenóis , Osmose , Nylons/química , Cafeína , Água/química
4.
Macromol Rapid Commun ; 45(3): e2300524, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903330

RESUMO

Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of ß-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.


Assuntos
Monoterpenos Bicíclicos , Lactamas , beta-Lactamas , Lactamas/química , Nylons/química , Peso Molecular , Polímeros/química , Florestas , Polimerização
5.
J Pharmacol Sci ; 154(1): 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081679

RESUMO

PURPOSE: The DNA recognition peptide compounds pyrrole-imidazole (PI) polyamides bind to the minor groove and can block the binding of transcription factors to target sequences. To develop more PI polyamides as potential treatments for fibrotic diseases, including chronic renal failure, we developed multifunctional PI polyamides that increase hepatocyte growth factor (HGF) and decrease transforming growth factor (TGF)-ß1. METHODS: We designed seven PI polyamides (HGF-1 to HGF-7) that bind to the chicken ovalbumin upstream promoter transcription factor-1 (COUP-TF1) binding site of the HGF promoter sequence. We selected PI polyamides that increase HGF and suppress TGF-ß1 in human dermal fibroblasts (HDFs). FINDINGS: Gel shift assays showed that HGF-2 and HGF-4 bound the appropriate dsDNAs. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 mRNA expression in HDFs stimulated by phorbol 12-myristate 13-acetate. HGF-2 and HGF-4 significantly inhibited the TGF-ß1 protein expression in HDFs with siRNA targeting HGF, indicating that HGF-2 and HGF-4 directly inhibited the expression of TGF-ß1. CONCLUSION: The designed and synthetic HGF PI polyamides targeting the HGF promoter, which increased the expression of HGF and suppressed the expression of TGF-ß, will be a potential practical medicine for fibrotic diseases, including progressive renal diseases.


Assuntos
Nylons , Fator de Crescimento Transformador beta1 , Humanos , Nylons/química , Nylons/farmacologia , Fator de Crescimento de Hepatócito , Fator de Crescimento Transformador beta/genética , Pirróis/farmacologia , Pirróis/química , Imidazóis/farmacologia , Imidazóis/química
6.
Environ Sci Technol ; 58(1): 391-399, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147515

RESUMO

Low-cost polyamide thin-film composite membranes are being explored as alternatives to expensive cation exchange membranes for seawater electrolysis. However, transport of chloride from seawater to the anode chamber must be reduced to minimize the production of chlorine gas. A double-polyamide composite structure was created that reduced the level of chloride transport. Adding five polyamide layers on the back of a conventional polyamide composite membrane reduced the chloride ion transport by 53% and did not increase the applied voltage. Decreased chloride permeation was attributed to enhanced electrostatic and steric repulsion created by the new polyamide layers. Charge was balanced through increased sodium ion transport (52%) from the anolyte to the catholyte rather than through a change in the transport of protons and hydroxides. As a result, the Nernstian loss arising from the pH difference between the anolyte and catholyte remained relatively constant during electrolysis despite membrane modifications. This lack of a change in pH showed that transport of protons and hydroxides during electrolysis was independent of salt ion transport. Therefore, only sodium ion transport could compensate for the reduction of chloride flux to maintain the set current. Overall, these results prove the feasibility of using a double-polyamide structure to control chloride permeation during seawater electrolysis without sacrificing energy consumption.


Assuntos
Cloretos , Nylons , Nylons/química , Prótons , Eletrólise , Água do Mar/química , Hidróxidos , Sódio , Membranas Artificiais
7.
Water Res ; 247: 120774, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898000

RESUMO

While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.


Assuntos
Nylons , Purificação da Água , Permeabilidade , Nylons/química , Membranas Artificiais , Purificação da Água/métodos , Cloreto de Sódio
8.
Chemosphere ; 344: 140309, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797897

RESUMO

In this study, considering the serious problem of lack of fresh water worldwide and the effectiveness of reverse osmosis (RO) membranes in water purification, we prepared improved RO membranes with two-dimensional quasi-MXene nanosheets. In this study, the MAX phase with the chemical formula of Ti2AlN was prepared through the reactive sintering route. Prosperous preparation of the MAX phase with the hexagonal crystalline structure was approved by an X-ray diffraction pattern. Compacted sheets morphology was recognized for the prepared MAX phase from transmittance electron microscopy and scanning electron microscopy micrographs. Then, Ti2NTx quasi-MXene nanosheets were prepared by selective ultrasonic-assisted exfoliation of the MAX phase. Polyamide (PA) thin-layer composite RO membranes with different weight percentages of Ti2NTx quasi-MXene were fabricated by the interfacial polymerization (IP) method. The addition of ultrasonic-assisted prepared quasi-MXene creates numerous and coherent nanochannels on the surface of the membrane. The optimum membrane with 0.01 wt% of quasi-MXene showed the highest pure water flux of 31.9 L m-2. h-1 with an improved salt rejection of 98.2%. Therefore, these nanosheets showed that they can partially solve the trade-off between water permeability and salt rejection, which is a serious challenge in RO membranes. Also, the membranes containing quasi-MXene showed good resistance against fouling by humic acid. This research can be a scalable development in making high-performance membranes.


Assuntos
Incrustação Biológica , Nylons , Osmose , Nylons/química , Incrustação Biológica/prevenção & controle , Titânio , Água/química
9.
Macromol Rapid Commun ; 44(24): e2300371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657922

RESUMO

Polyamide 56 (PA56) has gained significant attention in the academic field due to its remarkable mechanical and thermal properties as a highly efficient and versatile biobased material. Its superior moisture absorption property also makes it a unique advantage in the realm of fiber textiles. However, despite extensive investigations on PA56's molecular and aggregate state structure, as well as processing modifications, little attention has been paid to its polymerization mechanism. Herein, the influence of temperature and time on PA56's polycondensation reaction is detailed studied by end-group titration and carbon nuclear magnetic resonance (NMR) techniques. The reaction kinetics equations for the pre-polymerization and vacuum melt-polymerization stages of PA56 are established, and possible side reactions during the polycondensation process are analyzed. By optimizing the reaction process based on kinetic characteristics, PA56 resin with superior comprehensive properties (melting temperature of 252.6 °C, degradation temperature of 371.6 °C, and tensile strength of 75 MPa) is obtained. The findings provide theoretical support for the industrial production of high-quality biobased PA56.


Assuntos
Nylons , Nylons/química , Polimerização , Temperatura
10.
Chemosphere ; 338: 139556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467861

RESUMO

The novel thin film composite (TFC) forward osmosis (FO) membrane with electrospinning nanofibers as support layer can alleviate internal concentration polarization (ICP). While the macropores of the nanofiber support layer cause defects in the polyamide (PA) layer. Therefore, hydrophobic polyvinylidene fluoride (PVDF) fine nanofibers were used as an interlayer to modulate the process of interfacial polymerization (IP) in this study. The results showed that the introduction of the interlayer improved the hydrophobicity of the support layer for achieving uniform, thin and defect-free selective polyamide (PA) layer. The water flux of TFC-PVDF was 58.26 LMH in the FO mode of 2 M NaCl, which was two times higher than that of the unmodified FO membrane. Lower reverse salt flux (4.91 gMH) and structural parameter (179.43 µm) alleviated the ICP. In addition, TFC-PVDF membrane showed good anti-fouling performance for SA (flux recovery ratio of 93.97%) due to high hydrophilicity, low zeta potential and low roughness. This study provides an easy and promising method to prepare defect-free PA selective layer on the macropores nanofiber support layer. The novel FO membrane shows high desalination performance and anti-fouling properties.


Assuntos
Nanofibras , Purificação da Água , Nylons/química , Membranas Artificiais , Purificação da Água/métodos , Osmose , Cloreto de Sódio , Interações Hidrofóbicas e Hidrofílicas
11.
Environ Sci Technol ; 57(29): 10860-10869, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428116

RESUMO

Thin film composite polyamide (TFC) nanofiltration (NF) membranes represent extensive applications at the water-energy-environment nexus, which motivates unremitting efforts to explore membranes with higher performance. Intrusion of polyamide into substrate pores greatly restricts the overall membrane permeance because of the excessive hydraulic resistance, while the effective inhibition of intrusion remains technically challenging. Herein, we propose a synergetic regulation strategy of pore size and surface chemical composition of the substrate to optimize selective layer structure, achieving the inhibition of polyamide intrusion effective for the membrane separation performance enhancement. Although reducing the pore size of the substrate prevented polyamide intrusion at the intrapore, the membrane permeance was adversely affected due to the exacerbated "funnel effect". Optimizing the polyamide structure via surface chemical modification of the substrate, where reactive amino sites were in situ introduced by the ammonolysis of polyethersulfone substrate, allowed for maximum membrane permeance without reducing the substrate pore size. The optimal membrane exhibited excellent water permeance, ion selectivity, and emerging contaminants removal capability. The accurate optimization of selective layer is anticipated to provide a new avenue for the state-of-the-art membrane fabrication, which opens opportunities for promoting more efficient membrane-based water treatment applications.


Assuntos
Nylons , Purificação da Água , Nylons/química , Membranas Artificiais , Filtração
12.
J Am Soc Mass Spectrom ; 34(7): 1383-1391, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37262418

RESUMO

Enzymatic biodegradation of polymers, such as polyamides (PA), has the potential to cost-effectively reduce plastic waste, but enhancements in degradation efficiency are needed. Engineering enzymes through directed evolution is one pathway toward identification of critical domains needed for improving activity. However, screening such enzymatic libraries (100s-to-1000s of samples) is time-consuming. Here we demonstrate the use of robotic autosampler (PAL) and immediate drop on demand technology (I.DOT) liquid handling systems coupled with open-port sampling interface-mass spectrometry (OPSI-MS) to screen for PA6 and PA66 hydrolysis by 6-aminohexanoate-oligomer endo-hydrolase (nylon hydrolase, NylC) in a high-throughput (8-20 s/sample) manner. The OPSI-MS technique required minimal sample preparation and was amenable to 96-well plate formats for automated processing. Enzymatic hydrolysis of PA characteristically produced soluble linear oligomer products that could be identified by OPSI-MS. Incubation temperatures and times were optimized for PA6 (65 °C, 24 h) and PA66 (75 °C, 24 h) over 108 experiments. In addition, the I.DOT/OPSI-MS quantified production of PA6 linear dimer (8.3 ± 1.6 µg/mL) and PA66 linear monomer (13.5 ± 1.5 µg/mL) by NylC with a lower limit of detection of 0.029 and 0.032 µg/mL, respectively. For PA6 and PA66, linear oligomer production corresponded to 0.096 ± 0.018% and 0.204 ± 0.028% conversion of dry pellet mass, respectively. The developed methodology is expected to be utilized to assess enzymatic hydrolysis of engineered enzyme libraries, comprising hundreds to thousands of individual samples.


Assuntos
Hidrolases , Nylons , Nylons/química , Nylons/metabolismo , Hidrolases/metabolismo , Espectrometria de Massas , Hidrólise
13.
Sci Total Environ ; 889: 164283, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209732

RESUMO

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.


Assuntos
Cloro , Nylons , Osmose , Nylons/química , Cloretos , Água , Cloreto de Sódio
14.
Environ Sci Technol ; 57(19): 7612-7623, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37104662

RESUMO

Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.


Assuntos
Destilação , Membranas Artificiais , Molhabilidade , Águas Residuárias , Água , Nylons/química
15.
Water Res ; 234: 119821, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889093

RESUMO

During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.


Assuntos
Membranas Artificiais , Nylons , Nylons/química , Permeabilidade , Cloreto de Sódio , Polimerização
16.
Environ Sci Technol ; 57(14): 5999-6007, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996327

RESUMO

A free-standing polyamide (PA) film is fabricated via in situ release from a thin-film composite (TFC) membrane achieved through the removal of the polysulfone support. The structure parameter S of the PA film is measured to be 24.2 ± 12.6 µm, which is about 87-fold of its film thickness. A significant decline in water flux of the PA film from an ideal forward osmosis membrane is observed. We find that the decline is predominantly influenced by the internal concentration polarization (ICP) of the PA film based on our experimental measurements and theoretical calculations. We propose that the asymmetric hollow structures of the PA layer with dense crusts and cavities may be the underlying cause of the occurrence of the ICP. More importantly, the structure parameter of the PA film can be reduced and its ICP effect can be mitigated by tuning its structures with fewer and shorter cavities. Our results for the first time provide experimental evidence to prove that the PA layer of the TFC membrane has the ICP effect, which could potentially provide fundamental insights into the influence of structural properties of PA on the membrane separation performance.


Assuntos
Nylons , Purificação da Água , Nylons/química , Membranas Artificiais , Osmose , Água/química , Purificação da Água/métodos
17.
Environ Sci Technol ; 57(9): 3930-3939, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815574

RESUMO

Salt permeability of polyamide reverse osmosis (RO) membranes has been shown to increase with increasing feed salt concentration. The dependence of salt permeability on salt concentration has been attributed to the variation of salt partitioning with feed salt concentration. However, studies using various analytical techniques revealed that the salt (total ion) partitioning coefficient decreases with increasing salt concentration, in marked contrast to the observed increase in salt permeability. Herein, we thoroughly investigate the dependence of total ion and co-ion partitioning coefficients on salt concentration and solution pH. The salt partitioning is measured using a quartz crystal microbalance (QCM), while the co-ion partitioning is calculated from the measured salt partitioning using a modified Donnan theory. Our results demonstrate that the co-ion and total ion partitioning behave entirely differently with increasing salt concentrations. Specifically, the co-ion partitioning increased fourfold, while total ion partitioning decreased by 60% as the salt (NaCl) concentration increased from 100 to 800 mM. The increase in co-ion partitioning with increasing salt concentration is in accordance with the increasing trend of salt permeability in RO experiments. We further show that the dependence of salt and co-ion partitioning on salt concentration is much more pronounced at a higher solution pH. The good co-ion exclusion (GCE) model─derived from the solution-friction model─is used to calculate the salt permeability based on the co-ion partitioning coefficients. Our results show that the GCE model predicts the salt permeabilities in RO experiments relatively well, indicating that co-ion partitioning, not salt partitioning, governs salt transport through RO membranes. Our study provides an in-depth understanding of ion partitioning in polyamide RO membranes and its relationship with salt transport.


Assuntos
Cloreto de Sódio , Purificação da Água , Osmose , Nylons/química , Membranas Artificiais , Purificação da Água/métodos
18.
J Am Chem Soc ; 145(1): 697-705, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573894

RESUMO

Semi-aromatic polyamides (SAPs) synthesized from petrochemical diacids and diamines are high-performance polymers that often derive their desirable properties from a high degree of crystallinity. Attempts to develop partially renewable SAPs by replacing petrochemical diacids with biobased furan-2,5-dicarboxylic acid (FDCA) have resulted in amorphous materials or polymers with low melting temperatures. Herein, we report the development of poly(5-aminomethyl-2-furoic acid) (PAMF), a semicrystalline SAP synthesized by the polycondensation of CO2 and lignocellulose-derived monomer 5-aminomethyl-2-furoic acid (AMF). PAMF has glass-transition and melting temperatures comparable to that of commercial materials and higher than that of any previous furanic SAP. Additionally, PAMF can be copolymerized with conventional nylon 6 and is chemically recyclable. Molecular dynamics (MD) simulations suggest that differences in intramolecular hydrogen bonding explain why PAMF is semicrystalline but many FDCA-based SAPs are not.


Assuntos
Ácidos Dicarboxílicos , Nylons , Nylons/química , Ácidos Dicarboxílicos/química , Temperatura
19.
Chemosphere ; 310: 136929, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36273607

RESUMO

The separation of hardness ions such as calcium and magnesium from hard water can improve water quality, which is important but technically challenging. Nanofiltration (NF) has attracted much attention because of its efficiency, environmental friendliness and low cost. However, common NF membranes with a singly (either positively or negatively) charged layer have insufficient water softening capacity. In this work, two types of dual-layer Janus charged polyamide NF membranes composed of oppositely charged inner and outer layers were developed for the first time by sequential electrospray polymerization strategy for efficient water softening. The effect of the microstructure of the dually charged barrier layer on the separation performance of divalent salt ions was explored. Detailed mechanistic studies revealed that the microstructure of the outer layer of the barrier layer played a crucial role in the ion separation of the Janus membrane due to its control of the reverse transport of ions. Janus charged polyamide NF membrane with a loose outer layer exhibited better water softening performance (93.6% of hardness removed) compared to the singly charged NF membranes due to the simultaneous dual electrostatic effect and no ion reverse transport confinement. This Janus charged NF membrane also possessed good antifouling performance, mainly due to its negatively charged outer layers. The mechanistic insights gained in this study reveal the huge potential of microstructural design toward high-performance Janus charged NF membranes, and provide important guidance on the future development of high-efficiency water softening NF membranes.


Assuntos
Membranas Artificiais , Nylons , Nylons/química , Polimerização , Abrandamento da Água , Íons
20.
Langmuir ; 38(51): 16094-16103, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512334

RESUMO

N-Oxide zwitterionic polyethyleneimine (ZPEI), a new kind of aqueous phase monomer synthesized by commercially branched polyethyleneimine (PEI) via oxidation reaction, was prepared for fabrication of thin-film composite (TFC) polyamide membranes via interfacial polymerization. The main factors, including the monomer concentration and immersion time of the aqueous phase and organic phase, were investigated. Compared with PEI-TFC membranes, the obtained optimal defect-free ZPEI-TFC membranes exhibited a lower roughness (3.3 ± 0.3 nm), a better surface hydrophilicity, and a smaller pore size (238 Da of MWCO). The positively charged ZPEI-TFC membranes (isoelectric point at pH 8.05) showed higher rejections toward both divalent cationic (MgCl2, 93.0%) and anionic (Na2SO4, 96.1%) salts with a water permeation flux of up to 81.0 L·m-2·h-1 at 6 bar, which surpassed currently reported membranes. More importantly, mainly owing to N-oxide zwitterion with strong hydration capability, ZPEI-TFC membranes displayed a high flux recovery ratio (97.0%) toward a model protein contaminant (bovine serum albumin), indicating good anti-fouling properties. Therefore, the novel N-oxide zwitterion functionalized positively charged nanofiltration membranes provide an alternative for water desalination and sewage reclamation.


Assuntos
Nylons , Óxidos , Nylons/química , Polietilenoimina , Membranas Artificiais , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...